Free Book Online
Perfect Lattices in Euclidean Space


Perfect Lattices in Euclidean Space

2.5 (2076)

Log in to rate this item

    Available in PDF Format | Perfect Lattices in Euclidean Space.pdf | Unknown
    Jacques Martinet
Lattices are discrete subgroups of maximal rank in a Euclidean space. To each such geometrical object, we can attach a canonical sphere packing which, assuming some regularity, has a density. The question of estimating the highest possible density of a sphere packing in a given dimension is a fascinating and difficult problem: the answer is known only up to dimension 3. This book thus discusses a beautiful and central problem in mathematics, which involves geometry, number theory, coding theory and group theory, centering on the study of extreme lattices, i.e. those on which the density attains a local maximum, and on the so-called perfection property. Written by a leader in the field, it is closely related to, though disjoint in content from, the classic book by J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, published in the same series as vol. 290. Every chapter except the first and the last contains numerous exercises. For simplicity those chapters involving heavy computational methods contain only few exercises. It includes appendices on Semi-Simple Algebras and Quaternions and Strongly Perfect Lattices.  
2.4 (8834)
  • Pdf

*An electronic version of a printed book that can be read on a computer or handheld device designed specifically for this purpose.

Formats for this Ebook

Required Software Any PDF Reader, Apple Preview
Supported Devices Windows PC/PocketPC, Mac OS, Linux OS, Apple iPhone/iPod Touch.
# of Devices Unlimited
Flowing Text / Pages Pages
Printable? Yes

Book details

  • PDF | 541 pages
  • Jacques Martinet
  • Springer
  • Unknown
  • 7
  • Science Math
Read online or download a free book: Perfect Lattices in Euclidean Space

Review Text

The message text: